Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 322: 117624, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38128893

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) which has a global impact on the health care system with its recurrent and incompletely curable characteristics, affects the patients' quality of life. Gilaburu (GB; Viburnum opulus L.) is a fruit with rich polyphenol ingredient which is used ethnobotanically in Türkiye for medicinal purposes (for example, to pass kidney stones, to treat stomach, heart, and liver diseases, hemorrhages, hypertension, ulcers, common cold, tuberculosis, rheumatic and menstrual pain, and diabetes). On the other hand, the effects of GB in the experimental UC model have not been studied. AIM OF THE STUDY: This study aimed to explore the potential antioxidant and anti-inflammatory effects of GB fruit extract in improving acetic acid (AA)-induced UC. MATERIALS AND METHODS: Starting immediately after (AA + GB group) or 1 week before (GB + AA + GB group) the colitis induced by intrarectal AA (5%; v/v) administration, the rats orally received GB (100 mg/kg) once per day for 3 days. The control and AA groups were administered orally saline (1 ml), while the AA + SS group were administered sulfasalazine (SS; 100 mg/kg; orally) as a positive control once per day for 3 days. Distal colonic tissue specimens were obtained for the histological and biochemical [myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), chemiluminescence (CL), caspase-3, 8-hydroxy-2'-deoxyguanosine (8-OHdG), matrix metalloproteinase (MMP)-9, transforming growth factor (TGF)-ß1, smad-3 and cytokine (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, interferon (IFN)-γ), measurements] evaluations on the 3rd day. RESULTS: Elevated macroscopic and microscopic damage scores, high tissue wet weight values, increased tissue-associated MPO, MDA, CL, caspase-3, 8-OHdG, cytokines (TNF-α, IL-1ß, IL-6, IL-8), MMP-9, TGF-ß1, smad-3 levels, and decreased GSH values of the AA group were all reversed by GB treatments (AA + GB and GB + AA + GB groups) (p < 0.05-0.001). However, sulfasalazine treatment (AA + SS group) did not change the IL-8, 8-OHdG, MMP-9, and TGF-ß1 measurements significantly. CONCLUSIONS: Gilaburu shows both anti-inflammatory and antioxidant effects against AA-induced colonic damage by suppressing neutrophil infiltration, regulating inflammatory mediators, inhibiting reactive species production, lipid peroxidation, and apoptosis, conserving endogenous antioxidant glutathione, and ameliorating oxidative DNA damage. Since the current ulcerative colitis drugs display limited benefits and adverse side effects, potential therapeutic and/or prophylactic role of gilaburu can be evaluated in ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Viburnum , Humanos , Ratas , Animales , Colitis Ulcerosa/tratamiento farmacológico , Ácido Acético/toxicidad , Ácido Acético/metabolismo , Oxidantes/metabolismo , Caspasa 3/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Sulfasalazina/farmacología , Interleucina-6/metabolismo , Frutas/metabolismo , Interleucina-8/metabolismo , Calidad de Vida , Colon , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Citocinas/metabolismo , Glutatión/metabolismo , Antiinflamatorios/efectos adversos
2.
NPJ Biofilms Microbiomes ; 9(1): 99, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38092763

RESUMEN

Spinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut-brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut-brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography-mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on February 13, 2017 (ChiCTR-RPC-17010621).


Asunto(s)
Disbiosis , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Disbiosis/microbiología , Ácidos Grasos Volátiles , Ácido Acético/metabolismo , Bacterias/genética , Bacterias/metabolismo , Ácido Butírico/metabolismo
3.
Bioresour Technol ; 386: 129489, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37460017

RESUMEN

In this study, calcium peroxide was modified and doped with metal-based nanoparticles (NP) to enhance the efficiency of pretreatment and biohydrogen generation from RS. The findings revealed that the addition of MnO2-CaO2 NPs (at a dosage of 0.02 g/g TS of RS) had a synergistic effect on the breakdown of biomass and the production of biohydrogen. This enhancement resulted in a maximum hydrogen yield (HY) of 58 mL/g TS, accompanied by increased concentrations of acetic acid (2117 mg/L) and butyric acid (1325 mg/L). In contrast, RS that underwent pretreatment without the use of chemicals or NP exhibited a lower HY of 28 mL/g TS, along with the lowest concentrations of acetic acid (1062 mg/L) and butyric acid (697 mg/L). The outcome showed that supplementation of NP stimulated the pretreatment of RS and improved the formation of acetic and butyric acid through the regulation of metabolic pathways during acidogenic fermentation.


Asunto(s)
Oryza , Oryza/metabolismo , Ácido Butírico , Biomasa , Compuestos de Manganeso , Óxidos/farmacología , Fermentación , Metales , Ácido Acético/metabolismo , Hidrógeno/metabolismo
4.
Microb Cell Fact ; 22(1): 75, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081440

RESUMEN

BACKGROUND: Coenzyme A (CoA) is a carrier of acyl groups. This cofactor is synthesized from pantothenic acid in five steps. The phosphorylation of pantothenate is catalyzed by pantothenate kinase (CoaA), which is a key step in the CoA biosynthetic pathway. To determine whether the enhancement of the CoA biosynthetic pathway is effective for producing useful substances, the effect of elevated acetyl-CoA levels resulting from the introduction of the exogenous coaA gene on poly(3-hydroxybutyrate) [P(3HB)] synthesis was determined in Escherichia coli, which express the genes necessary for cyanobacterial polyhydroxyalkanoate synthesis (phaABEC). RESULTS: E. coli containing the coaA gene in addition to the pha genes accumulated more P(3HB) compared with the transformant containing the pha genes alone. P(3HB) production was enhanced by precursor addition, with P(3HB) content increasing from 18.4% (w/w) to 29.0% in the presence of 0.5 mM pantothenate and 16.3%-28.2% by adding 0.5 mM ß-alanine. Strains expressing the exogenous coaA in the presence of precursors contained acetyl-CoA in excess of 1 nmol/mg of dry cell wt, which promoted the reaction toward P(3HB) formation. The amount of acetate exported into the medium was three times lower in the cells carrying exogenous coaA and pha genes than in the cells carrying pha genes alone. This was attributed to significantly enlarging the intracellular pool size of CoA, which is the recipient of acetic acid and is advantageous for microbial production of value-added materials. CONCLUSIONS: Enhancing the CoA biosynthetic pathway with exogenous CoaA was effective at increasing P(3HB) production. Supplementing the medium with pantothenate facilitated the accumulation of P(3HB). ß-Alanine was able to replace the efficacy of adding pantothenate.


Asunto(s)
Escherichia coli , Ácido Pantoténico , Ácido 3-Hidroxibutírico , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Pantoténico/metabolismo , Ácido Acético/metabolismo , Poliésteres/metabolismo
5.
Anim Biotechnol ; 34(9): 4510-4522, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36639141

RESUMEN

The main of this study was to evaluate the effect of supplementation of tropical tree foliage in ruminant diets on the in vitro fermentation, bacterial population, volatile fatty acids (VFAs), and enteric CH4 production. Seven experimental diets were evaluated: a control treatment of Pennisetum purpureum (T7) and six treatments of P. purpureum supplemented (30%) with the foliage of Neomillspaughia emargiata (T1), Tabernaemontana amygdalifolia (T2), Caesalpinia gaumeri (T3), Piscidia piscipula (T4), Leucaena leucocephala (T5), and Havardia albicans (T6). The T2, T7, and T5 treatments had the highest (p < 0.05) digestibility of dry matter. Overall, supplementation increased (p < 0.05) the concentrations of propionic and butyric acid and decreased acetic acid. Methanogenic bacteria decreased (p < 0.05) in T1, T2, T5, and T6. Ruminococcus albus decreased in T1, T2, T3, and T5 and Selenomonas ruminiantum increased in T3. Fibrobacter succinogenes increased, except in T5. Methane production decreased (p < 0.05) in T1, T4, T5, and T6. The supplementation with Leucaena leucocephala, Tabernaemontana amygdalifolia, Neomillspaughia emargiata, Piscidia piscipula, Havardia albicans, and Caesalpinia gaumeri is a potential alternative nutritional strategy for ruminants that results in positive changes in VFAs profile, a decrease on CH4 production and methanogenic bacteria, and changes on fibrolytic and non-fibrolytic bacteria composition.HIGHLIGHTSTropical tree foliage supplementation increased propionic and butyric acid and decreased acetic acid concentrations.Fibrolytic, non-fibrolytic, and Methanogenic bacteria were selectively modulated with the supplementation of tropical tree foliage.The enteric methane (CH4) production decreased with the supplementation of tree foliage.The supplementation of Tabernaemontana amygdalifolia and Leucaena leucocephala had the highest digestibility and is a potential alternative nutritional strategy for ruminants.


Asunto(s)
Fabaceae , Árboles , Animales , Fermentación , Rumen/metabolismo , Dieta , Suplementos Dietéticos , Rumiantes , Ácidos Grasos Volátiles , Ácido Acético/metabolismo , Ácido Butírico , Metano/metabolismo , Alimentación Animal/análisis
6.
J Biotechnol ; 356: 60-64, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878811

RESUMEN

The effect of tungsten and selenium on cell growth and production of metabolites such as acetic acid and ethanol when fermenting syngas using "Clostridium autoethanogenum" was investigated to improve the process efficiency. General concentrations of selenium and tungsten in the medium are 0.01 µM during acetogenic syngas fermentation. We conducted culture experiments at concentrations of 0, 0.001, 0.01 and 0.1 µM for each heavy metal. The effect of selenium on cell growth and total metabolite production was greater than that of tungsten as the effect of selenium on formate dehydrogenase, an important enzyme of the Wood-Ljungdahl pathway, is greater than that of tungsten. Although an increase in tungsten had a marginal effect on total metabolite production, the ethanol/acetic acid production ratio increased significantly due to a decrease in acetic acid and an increase in ethanol production. Thus, tungsten plays a key role in activating aldehyde:ferredoxin oxidoreductase, a key enzyme in the reduction of acetate to ethanol. A specific ethanol productivity of 0.462 g ethanol/g DCW∙d was obtained in a culture using 0.01 µM selenium and 0.1 µM tungsten, which was 2.18 times higher than when using 0.01 µM of both selenium and tungsten.


Asunto(s)
Selenio , Tungsteno , Ácido Acético/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentación , Selenio/metabolismo , Tungsteno/metabolismo
7.
Molecules ; 27(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566122

RESUMEN

Inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) are diseases of the gastrointestinal system involving genetic and environmental factors attributed to oxidative stress and inflammation. Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the important therapeutic strategies to keep the disease in remission. As there is no permanent cure for IBD except for chronic long-term treatment or surgery, it is therefore imperative to investigate plant-based agents that are receiving attention for their therapeutic benefits to overcome the debilitating clinical conditions of IBD. Lycopodium (LYCO), a plant of tropical and subtropical origin and known by numerous names such as ground pine, club moss, or devil's claw, has been popularly used for centuries in traditional medicine including Chinese and Indian medicines. In the present study, the effect of LYCO has been investigated in an acetic acid (AA)-induced colitis model in Wistar rats. LYCO was orally administered at the dose of 50 mg/kg/day either 3 days before or 30 min after the induction of IBD and continued for 7 days by intrarectal administration of AA. The changes in body weight and macroscopic and microscopic analysis of the colon of rats of different experimental groups were observed on days 0, 2, 4, and 7. The levels of myeloperoxidase (MPO), reduced glutathione (GSH), and malondialdehyde (MDA) were measured. AA caused a significant reduction in body weight and increased macroscopic and microscopic ulcer scores along with a significant decline in antioxidant enzymes, superoxide dismutase (SOD), and catalase and antioxidant substrate, glutathione (GSH). There was a concomitant increased formation of malondialdehyde (MDA), a marker of lipid peroxidation, and raised myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with LYCO significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. AA also caused the release of proinflammatory cytokines such as interleukin-1ß (IL-1ß) and interleukin-23 (IL-23). Furthermore, AA also increased the levels of calprotectin, a protein released by neutrophils under inflammatory conditions of the gastrointestinal tract. LYCO treatment significantly reduced the release of calprotectin and proinflammatory cytokines. The results demonstrate that LYCO treatment has the potential to improve disease activity by inhibiting oxidative stress, lipid peroxidation, and inflammation along with histological preservation of colonic tissues.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Lycopodium , Ácido Acético/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Peso Corporal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Citocinas/metabolismo , Glutatión/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Complejo de Antígeno L1 de Leucocito/farmacología , Complejo de Antígeno L1 de Leucocito/uso terapéutico , Malondialdehído/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Ratas , Ratas Wistar
8.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563082

RESUMEN

Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-ß), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.


Asunto(s)
Ácido Acético , Músculo Esquelético , Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Ácido Acético/uso terapéutico , Envejecimiento/metabolismo , Animales , Suplementos Dietéticos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Plant Foods Hum Nutr ; 77(2): 206-211, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35441311

RESUMEN

Recently, there has been renewed interest in biorefining of agricultural onion into functional products. In this study, onion vinegar (OV) are prepared by a two-stage semi-continuous fermentation method, and its content of total flavonoids (3.01 mg/mL) and polyphenols (976.76 µg/mL) is superior to other commercial vinegars. OV possesses a high radical scavenging activity and enhances the antioxidant enzyme activities in vivo, alleviating intracellular oxidative stress in Caenorhabditis elegans. Treated by OV, the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH·), diammonium 2,2'-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS+·) and 2-phenyl-4,4,5,5- tetramethylimidazoline-1-oxyl 3-Oxide (PTIO·) free radicals clearance rates are 88.76, 98.76 and 90.54%, respectively in vitro. Whereas the glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans reach 271.57, 129.26, and 314.68%, respectively. Using RNAi and RT-PCR, it has been further confirmed that OV modulates transcription factor SKN-1, the nuclear factor erythroid 2-related factor 2 (Nrf2) homologous, in C. elegans, enhancing the resistance of C. elegans against sodium arsenite stress. Lifespan analysis reveals that 1 mL OV extends the maximum lifespan of the nematode to 26 days. Evidence is presented which shows that OV increases the lifespan of C. elegans by activating the SKN-1 signaling pathway. Overall, the OV is a well functional condiment, enhancing the value-added of onion.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácido Acético/análisis , Ácido Acético/metabolismo , Animales , Antioxidantes/análisis , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad , Cebollas/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo
10.
J Med Food ; 25(4): 389-401, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35438553

RESUMEN

Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.


Asunto(s)
Colitis Ulcerosa , Neuropéptidos , Ácido Acético/efectos adversos , Ácido Acético/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon , Citocinas/metabolismo , Ghrelina/metabolismo , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Ratas , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Food Microbiol ; 105: 104024, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35473977

RESUMEN

Oxygen plays a key role in kombucha production, since the production of main organic acids, acetic and gluconic acids, is performed through acetic acid bacteria's oxidative metabolism. Oxygen consumption during traditional kombucha production was investigated by comparing kombucha to mono and cocultures in sugared tea of microorganisms isolated from kombucha. Two yeasts, Brettanomyces bruxellensis and Hanseniaspora valbyensis and one acetic acid bacterium Acetobacter indonesiensis were used. Results showed that tea compounds alone were mainly responsible for oxygen depletion during the first 24 h following inoculation. During the first 7 days phase of production in open vessel, the liquid surface was therefore the only access to oxygen for microorganisms, as anaerobic conditions were sustained below this area. During the 5 days second phase of production after bottling, comparison of cultures with different microbial compositions showed that oxygen was efficiently depleted in the head space of the bottles in 3-6 h if the acetic acid bacterium was present. Lower access to oxygen after bottling stimulated ethanol production in B. bruxellensis and H. valbyensis cocultures with or without A. indonesiensis. This study provides insights into the management of oxygen and the roles of the tea and the biofilm during kombucha production.


Asunto(s)
Ácido Acético , Bacterias , Ácido Acético/metabolismo , Fermentación , Oxígeno/metabolismo , Té/microbiología
12.
J Med Food ; 25(4): 418-425, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35333623

RESUMEN

Acetic acid has been proposed to improve lifestyle-related diseases, including hyperlipidemia and hyperglycemia. This study compared the hypoglycemic and hypolipogenic effects of acetic acid vinegar (AV, contains only 4% acetic acid) and Monascus-fermented grain vinegar (MV) containing various bioactive compounds in 3T3L1 cells and C57BL/KsJ-db/db mice (DB). The DB were divided randomly into three treatment groups containing nine mice each; DB-, AV-, and MV-groups were orally administered 1 mL/kg/day of distilled water, acetic acid vinegar, and Monascus vinegar, respectively, for 8 weeks. Exposure to AV and MV inhibited the adipogenic differentiation of 3T3L1 preadipocytes and lipid accumulation during differentiation. Oral administration of AV or MV to the mice resulted in a marked reduction in the body weight, liver weight, and hepatic triglyceride content compared to the control DB-group. Moreover, treatment with AV and MV clearly increased the expression of cyclic adenosine monophosphate (cAMP) and AMP-activated protein kinase (AMPK) and suppressed the expression of fatty acid synthetase in liver tissues of DB. Significantly, lower levels of fasting blood glucose, insulin, leptin, and the glycosylated hemoglobin (HbA1c) as well as higher levels of the skeletal muscle GLUT4 expression were obtained in the AV- or MV-groups than levels determined in the control DB-group (P < .05). Although MV has the potential to be a natural alternative treatment for obesity-associated type 2 diabetes, this study suggests that acetic acid is the central ingredient in MV responsible for the hypoglycemic and hypolipogenic effects in the DB mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Monascus , Ácido Acético/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Insulina , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Monascus/metabolismo
13.
Int J Biol Macromol ; 187: 584-593, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34324907

RESUMEN

This study aims to examine the effect of ethanol and lactic acid on the production of bacterial cellulose, and determine the optimal composition of a co-supplemented culture using response surface methodology. Both ethanol and lactic acid, when added separately or jointly, affected the yield and properties of the biomaterial. Optimization resulted in an increase of 470% in the yield, compared to the Schramm-Hestrin medium. Culture growth profiles, substrate consumption and by-products generation, were examined. The growth rate was increased for cultures supplemented with lactic acid and both lactic acid and ethanol, while the production of gluconic acid was diminished for all modified cultures. The properties of BNC, such as the structure, crystallinity, water holding capacity and tensile strength, were also determined. BNC produced in optimal conditions is more porous and characterized by wider fibers. Despite a decrease in crystallinity, by the addition of ethanol, lactic acid and both additives, the ratio of cellulose Iα was almost unchanged. The stress, strain, young modulus and toughness were improved 2.8-4.2 times, 1-1.9 times, 2.4-3.5 times and 2.5-6.8 times, respectively. The new approach to improving BNC yields and properties presented here could contribute to more economical production and wider application of this biopolymer.


Asunto(s)
Celulosa/biosíntesis , Etanol/farmacología , Gluconacetobacter xylinus/efectos de los fármacos , Ácido Láctico/farmacología , Ácido Acético/metabolismo , Celulosa/química , Cristalización , Módulo de Elasticidad , Gluconacetobacter xylinus/crecimiento & desarrollo , Gluconacetobacter xylinus/metabolismo , Gluconatos/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Resistencia a la Tracción , Agua/química
14.
Int Immunopharmacol ; 96: 107758, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34162137

RESUMEN

Atherosclsis is a critical actuator causing cardiac-cerebral vascular disease with a complicated pathogeneon, refered to the disorders of intestinal flora and persistent inflammation. Gastrodin (4-(hydroxymethyl) phenyl-ß-D- Glucopyranoside) is the most abundant glucoside extracted from the Gastrodiaelata, which is a traditional Chinese herbal medicine for cardiac-cerebral vascular disease, yet its mechanisms remain little known. In the present study, the gastrodia extract and gastrodin attenuate the lipid deposition and foam cells on the inner membrane of the inner membrane of the thoracic aorta in the early atherosclerosis mice. Blood lipid detection tips that TC and LDL-C were reduced in peripheral blood after treatment with the gastrodia extract and gastrodin. Furthermore, unordered gut microbes are remodeled in terms of bacterial diversity and abundance at family and genus level. Also, the intestinal mucosa damage and permeability were reversed, accompaniedwith the reducing of inflammatory cytokines. Our findings revealed that the functions of gastrodia extract and gastrodin in cardiac-cerebral vascular disease involved to rescued gut microbes and anti-inflammation may be the mechanismof remission lipid accumulation.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Gastrodia/química , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Ácido Acético/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aterosclerosis/microbiología , Aterosclerosis/patología , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/uso terapéutico , Ácido Butírico/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/genética , Glucósidos/farmacología , Glucósidos/uso terapéutico , Inflamación/microbiología , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-1beta/sangre , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Lípidos/sangre , Ratones Endogámicos C57BL , Propionatos/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/sangre
15.
Biosci Biotechnol Biochem ; 85(5): 1243-1251, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686416

RESUMEN

Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, "rice moromi." In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a "pseudo" rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, "Acetofermenter," acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


Asunto(s)
Ácido Acético/metabolismo , Acetobacter/genética , Adaptación Fisiológica/genética , Etanol/metabolismo , Fermentación/genética , Termotolerancia/genética , Acetobacter/metabolismo , Reactores Biológicos , Genoma Bacteriano , Calor , Mutación , Oryza/química , Oxígeno/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo
16.
Int J Biol Macromol ; 180: 458-469, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711371

RESUMEN

Potato resistant starch type 3 (PRS) is helpful for weight-loss. To investigate the regulatory effects of PRS on high-fat diet (HFD)-induced obesity, different doses of PRS (5%, 15% and 25%) were fed to mice for 12 weeks. Metabolic syndrome related to obesity, intestinal microbiota composition and its metabolites as well as the relationship among them were studied. Results showed that PRS could regulate HFD-induced metabolic syndrome in a dose dependent manner; promote the proliferation of intestinal cells and expression of tight junction proteins, such as Occludin and zonula occludens (ZO)-1; reduce the Firmicutes/Bacteroidetes (F/B) rate; regulate the relative abundance of intestinal microbiota, such as Bifidobacterium, Ruminococcus, Bacteroides and Coprococcus; and promote the production of microbial metabolites, such as propionic acid and acetic acid. Besides, the alteration in the intestinal microbiota composition and metabolites were significantly correlated. It could be concluded that propionic acid and acetic acid were the two dominant metabolites of Bifidobacterium, Ruminococcus, Bacteroides, and Coprococcus, which contributed to the anti-obesity potential of PRS, metabolic syndrome alleviation, and intestinal barrier dysfunction.


Asunto(s)
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/prevención & control , Almidón Resistente/farmacología , Solanum tuberosum/química , Ácido Acético/metabolismo , Animales , Bacteroides/efectos de los fármacos , Bifidobacterium/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Lípidos/sangre , Masculino , Metabolómica/métodos , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Propionatos/metabolismo , Almidón Resistente/administración & dosificación
17.
Trop Anim Health Prod ; 53(1): 83, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33411117

RESUMEN

This experiment examines the effects of bamboo charcoal (BC) powder, bamboo vinegar (BV), and their combination (BCV) in the diet of laying hens on performance, egg quality, relative organ weights, and intestinal bacterial populations. A total of 320 laying hens (36 weeks of age) were divided into 4 treatment groups, with 10 replicates per treatment and 8 hens per replicate. They were fed on a control diet, the control diet supplemented with 0.8% BC, the control diet supplemented with 0.4% BV, or the control diet supplemented with a combination of BC (0.8%) and BV (0.4%) from 36 to 51 weeks of age. Egg production increased in the hens fed the BV and BCV diets during 48 to 51 weeks of age (P < 0.05). Damaged egg rate decreased in the hens fed the BV and BCV diets for the whole experiment (P < 0.05). Shell thickness was highest in the BCV-fed group at week 43, and shell strength was higher in the BV-fed group at week 51 (P < 0.05). Supplementation of BC or BCV in the diet resulted in a decreased abdominal fat pad (P < 0.05). In the ileal content, the population of Salmonella spp. decreased in the BV and BCV groups and the population of Lactobacillus spp. increased in the BV group (P < 0.05). The present results indicate that feeding BV or BCV alleviates damaged egg rate and decreases intestinal pathogenic bacteria, while feeding BC benefits by reducing abdominal fat. These results suggest that the effect of BCV seems to be induced by the synergistic effect of BC and BV, and that the BCV contributes to the effective use of bamboo on the laying hen's production.


Asunto(s)
Ácido Acético/metabolismo , Carbón Orgánico/metabolismo , Pollos/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Óvulo/efectos de los fármacos , Poaceae/química , Ácido Acético/administración & dosificación , Alimentación Animal/análisis , Animales , Bacterias/efectos de los fármacos , Carbón Orgánico/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , Polvos/administración & dosificación , Polvos/metabolismo , Distribución Aleatoria
18.
Vet Med Sci ; 7(3): 766-772, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33326702

RESUMEN

The purpose of this research was to evaluate the effects of apple cider vinegar in diet on the growth performance, immune response, histomorphological changes of the small intestine and some serum biochemical factors in broilers. A total of 85 broiler chicks of Ross 308 were purchased and 64 well-conditioned chicks were selected and divided into four experimental groups with four replicates and four chicks per replicate. The diets of groups 2, 3 and 4 were mixed with 1, 2 and 3% of vinegar, respectively, and group 1 as the control group was fed by the standard diet. The results showed that body weight gain was higher in the groups fed vinegar than the control group. There were no significant changes in the feed conversion ratio between the treatment and control groups (p = .507). Vinegar intake through the diet did not change significantly the weight of Bursa of Fabricius (p = .369) and spleen (p = .122). Vinegar significantly reduced blood urea nitrogen levels in the treatment groups compared with the control group (p = .0052). There was a significant increase in the level of antibody titre against Newcastle disease virus by haemagglutination inhibition test in the groups receiving vinegar in comparison with control group (p = .0358). Compared with the control group, the villus height (p = .0022) and intestinal crypts depth (p = .0015) significantly increased in the groups receiving apple cider vinegar. In conclusion, dietary supplementation with apple cider vinegar has beneficial effects on performance, immune response and small intestine histomorphology in broilers.


Asunto(s)
Ácido Acético/metabolismo , Pollos/fisiología , Inmunidad/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Ácido Acético/administración & dosificación , Alimentación Animal/análisis , Animales , Pollos/anatomía & histología , Pollos/crecimiento & desarrollo , Pollos/inmunología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Intestino Delgado/anatomía & histología , Distribución Aleatoria
19.
J Sci Food Agric ; 101(10): 4108-4117, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33368320

RESUMEN

BACKGROUND: Exhausted sugar beet pulp pellets (ESBPP) were used as raw material for lactic acid (LA) fermentation. The enzymatic hydrolysis of ESBPP was performed with the solid obtained after the fungal solid-state fermentation of ESBPP as a source of hydrolytic enzymes. Subsequently, a medium rich in glucose and arabinose was obtained, which was used to produce LA by fermentation. For LA production, two Lactobacillus strains were assayed and the effects of the supplementation of the hydrolysate with a nitrogen source and the mode of pH regulation of the fermentation were investigated. Moreover, a kinetic model for LA fermentation by Lactobacillus plantarum of ESBPP hydrolysates was developed. RESULTS: L. plantarum produced a LA concentration 34% higher than that produced by L. casei. The highest LA concentration (30 g L-1 ) was obtained with L. plantarum when the hydrolysate was supplemented with 5 g L-1 yeast extract and the pH was controlled with CaCO3 . The concentration of acetic acid differed depending on the concentration of CaCO3 added, producing its maximum value with 27 g L-1 CaCO3 . The proposed kinetic model was able to predict the evolution of substrates and products depending on the variation of the pH in the hydrolysate, according to the amount of CaCO3 added. CONCLUSIONS: ESBPP can be revalorised to produce LA. A pure LA stream or a mixture of LA and acetic acid, depending on the pH control method of the fermentation, can be produced. Thus, this control is of great interest depending on the destination of the effluent. © 2020 Society of Chemical Industry.


Asunto(s)
Beta vulgaris/microbiología , Medios de Cultivo/metabolismo , Hongos/metabolismo , Ácido Láctico/biosíntesis , Lactobacillus/metabolismo , Ácido Acético/metabolismo , Beta vulgaris/química , Beta vulgaris/metabolismo , Medios de Cultivo/análisis , Fermentación , Cinética , Residuos/análisis
20.
J Med Food ; 24(7): 697-708, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33156733

RESUMEN

We investigate the antioxidant activity and protective effects of the aqueous leaf extract of Pistacia lentiscus (AELPL) against ulcerative colitis induced by acetic acid infusion through the rectum in Wistar rats. Phytochemical analyses allowed the identification of numerous phenolic compounds in P. lentiscus leaves such as flavonoids (isoquercetin and luterolin), flavonols (catechin, rutin, and kaempferol), phenolic acids (ellagic and dicaffeoylquinic), and tanins. Acetic acid exposure induced macroscopic colonic mucosal lesions with hemorrhage, congestion, edema, and the development of an expected oxidative stress state revealed by an increase in lipoperoxidation and carbonylation of proteins and a decrease in sulfhydryl (SH) group levels and antioxidant enzyme activities such as superoxide dismutase, catalase, glutathione-S-peroxidase, and glutathione transferase, as well as an increase in the inflammatory cytokine, interleukin-6, in the colon and plasma. Administration of acetic acid also increased plasma and tissue levels of hydrogen peroxide and rates of iron and free calcium, whereas AELPL significantly and dose-dependently attenuated all the previous biochemical alterations and intracellular mediator perturbations. In conclusion, the AELPL exhibited a potent cytoprotective effect against acetic acid-induced colitis in rats, mainly through its antioxidant and anti-inflammatory activities.


Asunto(s)
Colitis Ulcerosa , Colitis , Pistacia , Ácido Acético/metabolismo , Animales , Antioxidantes/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Extractos Vegetales/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA